Учебная дисциплина: Допуски и технические измерения

Методические указания для студентов **группы** №17 по профессии среднего профессионального образования 15.01.05 Сварщик (ручной и частично механизированной сварки (наплавки)

Преподаватель: Мамаканова Б.К., эл. адрес <u>Guli-50@yandex.ru</u>, Viber, WhatsAppна тел. номер 89500819069

1. Рабочая программа учебной дисциплины Допуски и технические измерения (выписка) на период с 30.03.20 г. по 10.04.20 г.

	Содержание	Кол-	Дата по
Раздел 1.		ВО	расписанию
Тема 1.2.		часов	_
«Допуски и	Практическое занятие №2	2	
посадки»	1. «Допуски и посадки гладких	1	02.04.20 г.
	цилиндрических соединений».	1	09.04.20 г.

ПРАКТИЧЕСКОЕ ЗАНЯТИЕ № 2.

«ДОПУСКИ И ПОСАДКИ ГЛАДКИХ ЦИЛИНДРИЧЕСКИХ СОЕДИНЕНИЙ»

Цель занятия: определение величины допуска, предельных размеров, зазоры натягов, отработка навыков чтения машиностроительных чертежей с обозначениями допусков и посадок при сопряжении деталей, пользования таблицами допусков и посадок ГОСТ 25347-2013.

Задание: для заданного сопряжения(таблица 1) определить предельные размеры вала и отверстия; определить величину допусков каждой детали; найти величину предельных зазоров или натягов и допуск посадки; построить график полей допусков в определенном масштабе, нанести все размеры, отклонения, допуски. Вариант задания соответствует порядковому номеру в списке группы №17 (см. приложение 1). Срок сдачи задания 13.04.20 г.

Начертить эскизы сопряжения в сборе и по детально с обозначением посадок и отклонений.

Материальное оснащение: эскизы или чертежи деталей, справочные таблицы.

Инструкция

Порядок проведения занятия.

- 1.Исходя из заданных обозначений посадок, записать их условное обозначение дробью, как принято обозначать посадки на чертежах.
- 2. По таблицам ГОСТ 25347-2013 найти отклонения размеров вала и отверстия.
- 3. Вычислить предельные размеры вала и отверстия.
- 4. Определить величину допусков каждой детали.
- 5. Найти величину предельных зазоров или натягов и допуск посадки.

- 6.Построить график интервалов допусков в определённом масштабе, нанести все размеры, отклонения, допуски.
- 7. Вычертить эскизы сопряжения в сборе и подетально с обозначением посадок и отклонений.
 - 8. Выполнить отчёт в письменном виде.

Допуски и посадки гладких соединений.

Обработать деталь точно по номинальному размеру, указанному на чертеже,

практически невозможно из-за многочисленных погрешностей, влияющих на процесс обработки. Поэтому размер обработанной детали ограничивают двумя предельными размерами, один из которых называется наибольшим предельным размером, а другой – наименьшим предельным размером.

Измерением отверстия или вала с допустимой погрешностью определяют их действительный размер. Деталь является годной, если ее действительный размер больше наименьшего предельного размера, но не превосходит наибольшего предельного размера.

Таблица 2

Номер варианта	Диаметр сопряжения, мм	Посадка сопряжения	Номер варианта	Диаметр сопряжения, мм	Посадка сопряжения
1	25	H7/f7	16	10	E9/h8
2	30	H7/js6	17	16	K7/h6
3	16	H7/p6	18	20	R7/h6
4	40	H7/e8	19	25	H8/d9
5	12	H7/k6	20	36	H8/js7
6	20	H7/r6	21	45	H8/u8
7	32	F8/h6	22	50	H7/c8
8	50	Js7/h6	23	63	H8/k7
9	80	P7/h6	24	75	T7/h6
10	63	H7/g6	25	80	D9/h9
11	75	H8/m7	26	85	H7/m6
12	90	H7/s6	27	90	S7/h6
13	100	H8/h8	28	100	H8/e8
14	110	H7/n6	29	110	H8/n7
15	125	H7/t6	30	120	H7/s7

На чертежах вместо предельных размеров рядом с номинальным размером указывают два предельных отклонения - верхнее предельное отклонение -ES,es и нижнее предельное отклонение-EI,ei(puc.2).

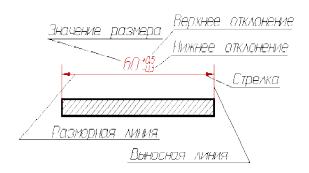


Рис. 2. Обозначениепредельных размеров на чертежах.

Допуском Т называют разность между наибольшими наименьшим предельными размерами, или алгебраическую разность между верхним и нижним отклонениями, характеризующими точность, с которой должен быть выполнен размер при изготовлении детали.

Допуск отверстия:

$$TD=D_{\text{max}}-D_{\text{min}}=ES-EI;$$
 (1)

Допусквала:

 $Td=d_{\text{max}}-d_{\text{min}}=es-ei.(2)$

Зону, ограниченную верхним и нижним отклонениями, называют полем допуска. Поле допуска определяется величиной допуска (квалитетом) и его положением относительно номинального размера (основным отклонением). При графическом изображении поле допуска заключено между линиями, соответствующими верхнему и нижнему отклонениям относительно нулевой линии.

Взаимное расположение полей допусков сопрягаемых деталей характеризует тип посадки и величины наибольших и наименьших зазоров или натягов. Характер соединения деталей, определяемый величиной получающихся в нем зазоров или натягов, называется посадкой. Различают посадки трех типов:с зазором,с натягом и переходные.

Посадка с зазором — посадка, при которой обеспечивается зазор в соединении и поле допуска отверстия расположено над полем допуска вала. Эту посадку характеризуют наименьший (S_{min}) и наибольший (S_{max}) зазоры. Наименьший зазор S_{min} в соединении отверстия с валом образуется, если D_{min} будет установлен вал с наибольшим предельным размером d_{max} .

Наименьший натяг (N_{min}) имеет местов соединении, если в отверстие с наи-большим

предельным размером D_{max} будет запрессован вал наименьшего предельного размера d_{min} , а наибольший натяг (N_{max}) — при наименьшем предельном размере отверстия D_{min} и наибольшем предельном размере вала d_{max} .

Наибольший натяг:

$$N_{\text{max}} = d_{\text{max}} - D_{\text{min}} = es - EI; \tag{3}$$

Наименьший натяг:

 $N_{\min}=d_{\min}-D_{\max}=ei-ES.$ (4) D_{\min} будет установлен вал с наибольшим предельным размером d_{\max} . Наибольший зазор S_{\max} образуется при наибольшем предельном размере отверстия D_{\max} инаименьшем предельном размере вала d_{\min} .

Наибольший зазор:

$$S_{\text{max}} = D_{\text{max}} - d_{\text{min}} = ES - ei; \tag{5}$$

Наименьшийзазор:

$$S_{\min} = D_{\min} - d_{\max} = EI - es. \tag{6}$$

Посадка с натягом – посадка, при которой обеспечивается натяг в соединении, а поле

допуска отверстия расположено под полем допуска вала. Посадку с натягом характеризуют наименьший N_{min} и наибольший $N_{\text{max.}}$

Переходная посадка –посадка, при которой возможно получение,как зазора, таки натяга. В этом случае поля допусков отверстия и вала перекрываются частично или полностью.

Наибольший зазор:

$$S_{\text{max}} = D_{\text{max}} - d_{\text{min}} = ES - ei; \tag{7}$$

Наибольший натяг:

$$N_{\max} = d_{\max} - D_{\min} = es - EI.$$
 (8) Допуск посадки — разность между

наибольшим и наименьшим зазорами (натягами)

или сумма допусков отверстия и вала, составляющих соединение.

Вал и отверстие, образующие посадку, имеют один и тотже номинальный размери

различаются верхними и нижними отклонениями; поэтому на чертежах над размерной линией посадку обозначают после номинального размера дробью, в числителе которой записывают предельные отклонения для отверстия,а в знаменателе-предельные отклонения для вала.

Содержание отчета

- 1. Указание темы, цели работы, задания.
- 2. Запись условного обозначения посадки на основе задания.

- 3. Определение и запись по таблицам ГОСТ 25347-2013 отклонения отверстия ивала.
- 4. Вычисление предельных размеров вала и отверстия.
- 5. Определение величины допусков каждой детали.
- 6. Определение величины предельных зазоров или натягов и допуск посадки.
- 7.Построение графика полей допусков в определенном масштабе с нанесением всех размеров, отклонений, допусков.
- 8. Вычерчивание эскиза сопряжения в сборе и подетально с указанием размеров.

Пример отчета по практическому занятию. Тема: допуски и посадки гладких цилиндрических соединений (указывается на

титульном листе, оформленном в соответствии с принятыми требованиями). Цель заня-

тия: определение величины допуска, предельных размеров, зазоров и натягов при сопряжении деталей, освоение приемов чтения сборочных и рабочих чертежей с обозначениями посадок и отклонений, и использования таблиц допусков и посадок ГОСТ 25347-2013.

Задание: для заданного сопряжения (таблица 2) определить предельные размеры вала и отверстия; определить величину допусков каждой детали; найти величину предельных зазоров или натягов и допуск посадки; построить график полей допусков в определенном масштабе, нанести все размеры, отклонения, допуски.

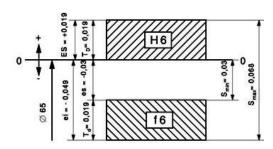
Начертить эскизы сопряжения в сборе и подетально с обозначением посадок и отклонений.

Материальное оснащение: эскизы или чертежи деталей, справочные таблицы.

Выполнение задания:

Пример расчета.

В задании вид сопряжения задан номинальным диаметром и условным обозначением


конкретной посадки. Задано сопряжение номинального диаметра 65мм, посадка с зазором в системе отверстия.

- 1. На основе задания записываем условное обозначение посадки:
- 2. По таблицам ГОСТ 25347-82 определяем отклонения отверстия и вала:

для отверстия: ES=+0,019 мм; EI=0; для вала:es =-0,030 мм; ei =-0,049 мм;

Записываем: для отверстия Ø 65 H6 =Ø 65 $^{+0,019}$ мм; для вала Ø 65 -f6= $^{65}_{-0,49}^{-0,30}$ мм.

- 3. Находим предельные размеры деталей: D_{max} =D +ES=65 +0,019 =65,019 мм; D_{min} =D +EI=65 мм; d_{max} =d + es =65+ (-0,030)=64,970 мм; d_{min} =d +ei =65 + (-0,049)=64,951 мм.
- 4. Определяем величину допусков размеров деталей: отверстие TD = D_{max} - D_{min} =65,019 65 =0,019 мм; вал Td = d_{max} d_{min} =64,970 64,951 =0,019 мм.
- 5. Определяем величину предельных зазоров и допуск посадки: $S_{ma}x=D_{max}-d_{min}=65,019-64,951=0,068$ мм; $S_{min}=D_{min}-d_{max}=65-64,970=0,030$ мм; $TS=S_{max}-S_{min}=0,068-0,030=0,038$ мм.
- 6. Строим схему расположения полей допусков (рис. 3).

Рис. 3. Схема расположения полей допусков.

7. Вычерчиваем сопряжениев сбореи подетально (рис. 4)

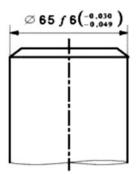


Рис. 4. Обозначение посадок и отклонений размеров на сборочном чертеже и подетально.

№ п/п	Ф.И.О.	Поим №
1.	Анферов Сергей Владимирович	20791
2.	Барбоев Сергей Александрович	20811
3.	Громов Иван Павлович	20792
4.	Долматов Павел Михайлович	20695
5.	Зайцев Артём Алексеевич	20793
6.	Зайцев Вячеслав Андреевич	20794
7.	Казаков Иван Владимирович	20697
8.	Кальминеев Михаил Григорьевич	20795
9.	Камшекин Игорь Владимирович	20698
10.	Константинов Павел Андреевич	20699
11.	Макаров Булат Владимирович	20700
12.	Назарян Давид Багдасарович	20701
13.	Овсянников Сергей Александрович	20812
14.	Пежемский Илья Анатольевич	20796
15.	Петров Илья Владимирович (опека)	20702
16.	Подольский Максим Романович	20703
17.	Пчелкин Никита Алексеевич	20797
18	Сабиров Алексей Александрович	20704
19.	Сабиров Сергей Маратович	20798
20.	Савкевич Владимир Александрович	20799
21.	Сороковиков Владислав Александрович	20800
22.	Танхаев Денис Булутович	20705
23.	Трофимов Дмитрий Евгеньевич	20706
24.	Фарзулаев Сеймур Теймироглы	20801
25.	Франц Эдуард Олегович (опека)	20707
26.	Черепанов Иван Сергеевич	20708
27.	Шапошников Кирилл Олегович	20709
28.	Шелихов Роман Алексеевич	20710

Литература и источники:

1. Допуски и технические измерения: учебник для нач. проф. образования / С.А. Зайцев, А.Д. Куранов, А.Н. Толстов. . — М.: ИЦ «Академия», 2012. — 304 с.

<u>Дополнительные источники:</u> 1. Допуски и технические измерения: Контрольные материалы: учеб. пособие для нач. проф. образования / Т. А. Багдасарова. — М.: ИЦ «Академия», 2013. — 64 с.

- 2. Багдасарова Т. А. Допуски и технические измерения: Лабораторно-практические работы: учеб. пособие для нач. проф. образования /. М.: ИЦ «Академия», 2013. 64 с.
- 3. Багдасарова. Т. А. Допуски и технические измерения: раб. тетрадь: учеб. пособие для нач. проф. образования. М.: ИЦ «Академия», 2013. 80 с.

Интернет-ресурсы:

- 4. Комплект лекций по учебной дисциплине "Допуски и технические измерения"Режим доступа: https://multiurok.ru/files/kompliekt-liektsii-po-uchiebnoi-distsiplinie-dopuski-i-tiekhnichieskiie-izmierieniia.html
- 5. Технические измерения. Допуски, посадки и технические измерения [Электронный ресурс] Режим доступа: https://armtorg.ru/articles/item/3414/

Нормативные документы:

- 6. ГОСТ 2.307- 2011 «ЕСКД. Нанесение размеров и предельных отклонений».
- 7. ГОСТ 2.308- 2011 «ЕСКД. Указание допусков формы и расположения поверхностей».
 - 8. «ЕСКД. Правила нанесения размеров, допусков и посадок конусов».
- 9. ГОСТ 25346-89 «Единая система допусков и посадок. Общие положения, ряды допусков и основных отклонений».
- 10. ГОСТ 2789-73 «Шероховатость поверхности. Параметры и характеристики. Обозначение».
 - 11. РД 03-606-03 «Инструкция по визуальному и измерительному контролю»
 - 12. ГОСТ 25347-2013 «Основные нормы взаимозаменяемости. Характеристики изделий геометрические. Система допусков на линейные размеры. Ряды допусков, предельные отклонения отверстий и валов»